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Introduction. This short memo presents an overview of my perspective of how SIM operates

in the astrometry mode. This perspective is limited to gross geometrical and operational considera-

tions necessary for astrometry data acquisition. The discussion is not intended to be complete, but

hopefully will shed some light on issues related to the SIM SIMULATOR, and provide a framework

(viz. a viz. the relevant equations) with which to evaluate them. Critical to this development is

the notion of the \regularized" measurement. This is the primary output of the astrometry data

acquisition process and the foundation of the astrometric equations. The role of the external

metrology system and how it interacts with the instrument exiblity in this process will also be

developed. We will walk through various observation scenarios, beginning from a simpli�ed set

of assumptions to a more complete set to elucidate this concept. A few model and observability

assumptions (some may be implicit) are made along the way to make everything hang together.

The thoughts here are somewhat preliminary, but nevertheless it is worthwhile to present them at

this early stage.

To begin it is important to de�ne the data set and variables in an initially simpli�ed and

pristine form that de�ne the astrometry equations from which some of the important science

objectives are derived. Let s0, s1; ..., sN denote the directions of N + 1 stars, and let b1,...,bM
denote M interferometer baseline vectors. Assume perfect astrometric measurements of the form

dij =< si; bj > : (1)

(It is not necessary that each star is observed by the same set of baselines above, i.e. there are not

necessarily M(N + 1) measurements.) Because of a priori knowledge errors in the star directions

and baseline vectors we look for corrections !i; !
j of the form

si ! si + !i � si; i = 0; :::; N

and

bj ! bj + !j � bj j = 1; :::;M:

The small rotations !i (!
j) correspond to displacements in the tangent planes to the unit sphere

at si (bj). Solving for the f!ig is one of the major science objectives of global astrometry.

To �rst order, (1) becomes

yij =< si; bj > + < si � bj ; !i > � < si � bj ; !
j > : (2)

The dimension of each of the tangent planes is 2, and thus each rotation de�nes two degrees of

freedom. It then becomes evident that there must be multiple star measurements for each baseline,

for otherwise the system of equations in (2) will be underdetermined. This is a fundamental caveat

of the SIM observation process.

Although the solvability of the system of equations (2) is not pursued here, we note that it

is not di�cult to show that the null space of the matrix corresponding to this system contains

(at least) three vectors corresponding to the in�ntesimal global rotations of the sphere. And

with proper connectivity of the observation sequence over the celestial sphere these in�nitesimal

rotations can be shown to span the null space of this matrix.
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There are other astrometric and instrument parameters of interest. The discussion will not

address the astrometric parameters of parallax and proper motion, but some of the instrument

parameters that arise as part of the astrometric reconstruction problem will be. For example,

since the absolute lengths of the interferometer baselines are only known to an accuracy of several

microns, these parameters emerge as instrument parameters that must be estimated within the

context of the astrometric equations. The analysis presented herein also shows that the intial

alignments of the interferometer baslelines must likewise be estimated. It is probably a safe bet

that other parameters will have to be estimated as the analysis incorporates more models of the

various subsystems.

Bright Science Stars with Rigid Spacecraft. The astrometry equations in (1) represent

the \perfect" scenario in which instantaneous measurements are taken of multiple stars with a

single baseline. Of course this is not possible, since even when the science star is bright enough

to close the delay line control loops around the science star signal itself, the instrument baseline

is not �xed in inertial space over the integration time. We �rst investigate how this a�ects the

astrometric equation (1) under the assumption that the spacecraft is rigid and the science star is

bright (i.e., no need for feedforward).

Let fEjg denote the inertial frame, and let fEj(t)g denote a spacecraft �xed frame. Let

the guide interferometer baselines be denoted b1 and b2, the science interferometer baseline is

represented as b3, and the corresponding guide and science star directions are given as s1; s2; and

s3, respectively. To reect the time{varying nature of the baselines we write (1) as

yi(t) =< si; bi(t) >; (3)

where in accordance with the rigid spacecraft assumption,

bi(t) =
X

b
j
iEj(t); (4)

with the components b
j
i constant with respect to the time varying frame Ej(t). We will always

assume that the time{varying frame Ej(t) is close to the inertial frame (so that the approximation

Ej(t) = Ej + ! � Ej for some vector ! is valid to a several picoradian accuracy). Note that

this relative alignment of the two frames is not a knowledge assumption, but actually a stability

assumption. Incorporating this time{varying component of the problem, (2) becomes

yi(t) =< ŝi; bi > + < ŝi � bi; !i > + < ŝi � bi; !(t) > + < si � bi; !i � !(t) > (5):

The second order term above becomes negligible when the the product of the stability error and

guide star position error satisfy an approximate bound

j!(t)jj!ijjbij � 10�11m: (6)

(I haven't meticulously gone through the error budget here, but the bound in (6) looks achievable

and in the right ballpark.) Even after discarding the second order term, the measurement equation

is still time dependent because of the presence of !(t). But if the delay measurement is simply

averaged, we obtain an equation similar to (2) of the form

�yi =< ŝi; bi > + < ŝi � bi; !i > + < ŝi � bi; �! >; (7)

where

�yi =
1

N

NX
k

yi(tk); and �! =
1

N

NX
k

!(tk): (8)
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Equation (7) is of the same character as (2), with the exceptions that the instantaneous angular

rotation has been replaced by the time{averaged rotation and the delay measurement has been

averaged. Thus the regularized measurement in this scenario is simply de�ned as the average of

the internal metrology delay measurements.

Under the present assumptions, the observation caveat is ful�lled as three star observations

are obtained for each baseline since only the estimate of the average rotation �! common to the

two guide star and science star interferometers is required to determine the baseline orientations

in inertial space. This is essentially the scenario considered in the global astrometric study in [2].

These conditions are overly restrictive, requiring observations of only bright stars.

Dim Star with Rigid Spacecraft. When the science star is too dim to close the delay

line controller around the fringe signal, feedforward is used, and a di�erent form of the regularized

measurement is needed.

The delay measurement equation (5) de�nes exactly what the feedforward command should

look like. Let z(t) denote this command. Then z is generated from the known and approximate

quantities in (5) via

z(t) =< ŝ3; b3 > + < b3 � ŝ3; !̂(t) >; (9)

where !̂ denotes the estimate of !. Contrast this with the \exact" feedforward term (excluding

second order terms)

y3(t) =< ŝ3; b3 > + < b3 � ŝ3; !3 > + < b3 � ŝ3; !(t) > : (10)

The di�erence, d3, of these two terms is actually measured with the science star fringe:

d3(t) =< ŝ3 � b3; !3 > + < b3 � ŝ3; !(t)� !̂(t) > : (11)

At �rst inspection the apparent time{varying nature of (11) doesn't bode well for producing fringes.

But as we shall see !(t)� !̂(t) (excluding second order terms), is actually time{invariant. And not

only is !(t)� !̂(t) constant, its value depends only on the guide star interferometer baselines and

guide stars. This is a critical point since if the science interferometer siderostats point at another

star, this term still does not change, and SIM can e�ectively achieve the required multiple star

measurements with a single baseline orientation. We �ll in the gaps of this discussion with a little

anlaysis below.

The estimate !̂(t) is synthesized as

!̂ = T y(y � Sb); (12)

where the matrix T is de�ned as

T =

�
(ŝ1 � b1)

T

(ŝ1 � b1)
T

�
; (13)

T y denotes the pseudoinverse of T ,

Sb =

�
< ŝ1; b1 >

< ŝ2; b2 >

�
and y =

�
y1
y2

�
(14)

Expanding (5), we see to �rst order that ! satis�es

! = T y(y � Sb� v) + �!; (14)
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where � denotes the orthogonal projection onto the null space of T and

v =

�
< s1 � b1; !1 >

< s2 � b2; !2 >

�
: (15)

Observe then that

! � !̂ = T yv +�!: (16)

Now T yv is time invariant and depends only on the �xed vectors ŝi; bi. The analysis in [1] shows

that the time{varying component �! in (16) is a second order term so long as the interferometer

baselines are su�ciently colinear and the elevation angle separation between the two guide stars

is comparable to the largest of the separation angles between each guide star and science star (a

mild constraint that should be easily met).

To �rst order, the delay equation from (11) takes the form

d3 =< ŝ3 � b3; !3 > + < b3 � ŝ3;�! >; (17)

where �! is the time invariant component of the di�erence between the estimated and actual

rotation between the body �xed and inertial frames. Thus in the dim science star observation sce-

nario, the regularized measurement is the feedforward stabilized fringe measurement, and instead

of estimating the rotation vector between frames, the di�erence between the actual and estimated

rotation used in the feedforward command is estimated in the astrometric equation.

Scale and Flexibility Errors. There are other error sources that must be accounted for in

the astrometry equations for both the bright and dim star scenarios. The �rst is that the absolute

position of the interferometer baselines with respect to the spacecraft frame are known only through

absolute metrology to several microns. The error in the length of the baseline is refered to as the

scale error. There is also an alignment error. Another error source derives from the exibility of

the spacecraft so that the components of the vectors in (4) are not actually constant. A linear

exible model of the baseline vectors would realize these vectors as a superposition of the exible

and rigid body modes of the system. In the inertial frame the baseline vector may be decomposed

as

bi(t) = bi + !(t)� bi + �i(t); (18)

where the rotational component of the rigid body modes is absorbed in the expression !(t) � bi,

and the exible and translational modes are in �i(t). Note that !(t) is the same for all of the

interferometer baselines because it is the rigid body behavior of the spacecraft. The way SIM

handles the exibility component is to measure it { the external metrology measurements are used

to estimate �i. This process is quite important, so a short digression will be made to discuss how

this can be done, and what additional error sources arise from this. Essentially what happens

is that the external metrology yields a model of the form (18), with the important feature being

that the rotation vector ! is the same for all baselines. However, as we shall see, this rotation

vector is not precisely the one in (18), and the resulting model does not arise from any mechanical

considerations.

Let X1; ::;XN denote corner cube locations. Let bij denote the baseline vector

bij = Xi �Xj (19)

and write

Xi = X0

i +�Xi;
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Xj = X0

j +�Xj ;

where X0

i and X0

j are the nominal positions of the corner cubes, and �Xi;�Xj are the perturba-

tions from nominal. Thus

bij = b0ij +�Xi ��Xj ; where b0ij = X0

i �X0

j (20)

The external metrology system makes di�erential measurements of the form

�dij = Xk �Xij � jX0

k �X0

i j k = 1; :::; 4; i 6= k (21)

where the Xk; k = 1; :::; 4 are locations on the metrology tetrahedron. Following [3], let F (x)

denote the distance function between all measured vector pairs, i.e. each component function of F

has the form jXk �Xj j. Then to �rst order

jXk �Xij � jX0

k �X0

i j =
@Fki

@Xk

(�Xk) +
@Fki

@Xj

(�Xi); (22)

where
@Fki

@Xk

=
1

jXk �Xij
< Xk �Xi; � >;

and
@Fki

@Xi

=
1

jXk �Xij
< Xi �Xk; � > :

Hence the di�erential measurement is to �rst order

jXk �Xij � jX0

k �X0

i j =
1

jXk �Xij
< Xk �Xi;�Xk ��Xi > : (23)

In [3] this set of equations is written as

DxF�x = �d �x =

0
@

�X1

...

�XN

1
A (24)

where DxF is the di�erential of F and �d is the vector consisting of the di�erential measurements.

The null space of DxF consists of the rigid body translations and rotations [3]. Let �x denote the

estimate of �x obtained via the pseudoinverse solution

�x = DxF
y�d: (25)

Since �x has no component in the null space of DxF , there exist vectors h and ! (\translation"

and \rotation" vectors, respectively) such that

�x��x =

0
@

h+ ! �X1

...

h+ ! �XN

1
A : (26)

Let b̂ij = b0ij + �xi � �xj (using the obvious correspondence for the �xi's), and note that

bij � b̂ij = ! � b0ij : (27)
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Hence,

bij = b0ij + ! � b0ij + �i; �i = �xi � �xj : (28)

Note that ! is independent of the baseline and the �xi's are obtained from the external metrology

data. This is the model analogous to (18) that meets the astrometry requirements. For the

interested reader's information, the di�erence between these two models is that in reality the

exible component � is not orthogonal to the rigid body components, whereas in (28) there is

orthogonality. ( Orthogonality holds in (18) over all mechanical degrees of freedom, and then only

with respect to the system mass matrix.)

Two errors arise from this solution. The �rst has to do with the linearization process, which

will not be addressed here. The second error source results from using the inexact di�erentialDxF

in the computation (25). This is due to the absolute metrology error in the location of the nominal

corner cube locations. Let X0 denote the nominal estimate of the vector of corner cube positions,

and let �X denote their true positions. Given the di�erential measurement �d, the error in the

computation of �x, call it �, resulting from the absolute metrology error is

j�j = j(DX0F y �D �XF
y)�dj

= j(DX0F y �D �XF
y)jj�dj:

(29)

Further bounds can be obtained using

j(DX0F y �D �XF
y)j � 2jDX0F �D �XF jF jDX0F yj:

For the SIM con�guration jDX0F yj � 7 and

jDX0F �D �XF jF � 6 � jbij � b0ij j=jb
0

ij j:

These bounds are not sharp, however they are probably representative of worst case errors. For

example, a 10�m absolute metrology error coupled with a 10�m change in the length of the

baselines could produce an error in the baseline measurement of approximately .75 nanometer.

(We shouldn't sweat these numbers quite yet since they are preliminary.)

Next because of the initial error in the estimate of bi, we write in the spacecraft �xed frame

b0i = b̂i + �ib̂i + !i � b̂i: (30)

The error correction terms �i and !i appear because of the initial uncertainty in the external

metrology measurements (which is on the order of several �m). It is assumed that �i and !i are

�xed, but unknown constants. Using (30) in (28) gives

bi(t) = b̂i + �ib̂i + (!i + !(t))� b̂i + �i(t): (31)

And retaining �rst order terms yields the astrometry equation

yi(t) =< ŝi; b̂i > + < ŝi; �i(t) > +�i < ŝi; b̂i > + < ŝi � b̂i; !i > + < b̂i � ŝi; (!
i + !(t) > : (32)

First we will assume the stars are bright, making this the analogue of (7). Introducing the

time averaged quantities

�yi =
1

N

X
j

yi(tj); �! =
1

N

X
j

!(tj); and ��i =
1

N

X
j

�i(tj); (33)
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results in the astrometric equation

�yi =< ŝi; b̂i > + < ŝi; ��i > +�i < ŝi; b̂i > + < ŝi � b̂i; !i > + < b̂i � ŝi; (!
i + �!) > (34)

with the regularized measurements �yi. The assumption we make is that �i(t) is measured with

the external metrology so that the term < ŝi; ��i > in (34) above is known. The other di�erences

between this equation and (7) are the presence of the unknown scale term and misalignment

terms, � and !i. These errors are assumed �xed with respect to the spacecraft frame. With this

assumption �i and !i emerge as instrument parameters that must be estimated, while �! is the

ideal time averaged orientation common for each baseline that must be estimated just as before.

Note that by the way the misalignments enter into the astrometric equations (for a �xed star we

can essentially only estimate the sum of the misalignment and rotation vectors), it would take

observations of di�erent stars to estimate these parameters.

Now let's see how misalignments and exibility impact the feedforward scenario for dim science

stars. We follow the outline provided by (9){(17), while incorporating the additional terms intro-

duced in the observation equation (32) due to baseline misalignments, scale error and exibility.

This time the synthesized feedforward command has the form

z =< ŝ3; b̂3 > + < ŝ3 � b̂3; !̂(t) > + < ŝ3; �3(t) >; (35)

where !̂(t) is again the estimated rotation between the spacecraft and inertial frames. Using (32),

the di�erence between the exact linearized feedforward term, y3, and the estimated term z in (35)

is

y3 � z = �3 < ŝ3; b̂3 > + < ŝ3 � b̂3; !
3 > + < ŝ3 � b̂3; !(t)� !̂(t) > + < b̂3 � ŝ3; !3 > : (36)

Note that y3 � z is measured with the science star fringe. Computing as before, we obtain

!̂(t) = T y[y � Sb� S�] (37)

keeping in mind that �(t) is estimated by the external metrology. Including the additional terms

in (32) to determine ! exactly (modulo its component in N(T )), the di�erence between the exact

and estimated rotations is

!(t)� !̂(t) = �T y[�Sb+ v + w] + �!(t); (38)

where v is de�ned as in (15), � is the orthogonal projection in (16), � = diag(�1; �2), and

w =

�
< s1 � b1; !

1 >

< s2 � b2; !
2 >

�
: (39)

One of the keys to the stability of the science star fringe in the feedforward case with exibility is

the ability of the external metrology system to accurately measure �(t). From (36) we obtain the

astrometric equation (keeping in mind that !(t)� !̂(t) is time invariant)

y3 � z = �3 < ŝ3; b̂3 > + < ŝ3 � b̂3; !
3 > + < ŝ3 � b̂3;�! > + < b̂3 � ŝ3; !3 > : (40)

This equation is identical to (17) with the exceptions that it is now necessary to estimate the

science interferometer baseline length and misalignment parameters, �3 and !3, respectively.
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What's Next? Before the SIM SIMULATOR investigates the �ner instrument errors (e.g.,

those characteristics that produce metrology errors, noncoincidence of starlight and metrology

paths, etc.) it is advisable to �rmly establish that the analysis we have presented is a realizable

functional representation of how SIM operates at the coarse level. This means to make sure that

we have identi�ed appropriate instrument parameters, that they are indeed identi�able, and the

notions of regularized measurements as de�ned make sense (i.e., they are in fact realizable with

the instrument). We have also been somewhat glib in our use of time{averaging signals. A better

model/quanti�cation of these is also needed.

A couple of speci�c things: Assemble a SIM \geometry" model to verify and quantify the anal-

ysis presented here. Get a better handle on some of the time{varying aspects of the problem (e.g.,

how does motion actually a�ect the regularized measurements? What does the time{averaging

really accomplish?) Since the real hand o� between the instrument and the ground processing

is the regularized measurement, a model of how the fringe position is processed would be useful.

Also, as a very near term exercise, a revisit of the absolute metrology error is recommended.
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